顺磁原理氧含量分析仪和氧化锆原理氧含量分析仪主要有以下区别:一、工作原理顺磁原理氧含量分析仪:利用氧气的顺磁性,即氧气在磁场中会受到磁力的作用而向磁场强度增强的方向移动。通过检测磁场中氧气的移动所引起的物理变化,如磁场的分布变化、扭力变化等,来确定氧气的含量。氧化锆原理氧含量分析仪:基于氧化锆固体电解质在高温下具有离子导电特性。当氧化锆两侧存在氧浓度差时,氧离子会从高浓度侧向低浓度侧扩散,从而在氧化锆两侧产生电势差,这个电势差与两侧的氧浓度差成正比,通过测量电势差来计算氧气的含量。二、测量精度顺磁原理:对氧的选择性强,受其他气体干扰小,在低浓度氧的测量中精度较高。但对振动较为敏感,安装和使用过程中的振动可能影响测量精度。氧化锆原理:测量精度也较高,但容易受到气体杂质、温度变化等因素的影响。需要定期校准以保证测量精度。顺磁原理: 在磁场中的响应迅速,因此顺磁原理氧含量分析仪响应速度快,能够快速检测到氧含量的变化。湖北氧含量气体分析仪生产厂商
氧化锆原理氧含量分析仪的缺点:温度变化影响测量精度:虽然氧化锆传感器在高温下具有较好的稳定性,但如果工作温度波动较大,仍然会对测量结果产生影响。因此,需要配备稳定的加热装置和温度控制系统,以确保传感器的工作温度保持稳定。存在“交叉敏感性”:除了对氧气有响应外,氧化锆传感器对一些具有类似氧化还原性质的气体也可能会有一定的响应,这就是所谓的“交叉敏感性”。例如,在存在一氧化碳、氢气等还原性气体的情况下,可能会干扰氧含量的测量,使测量结果出现偏差。校准要求高:由于氧化锆传感器的性能会随着使用时间的延长而发生变化,因此需要定期对分析仪进行校准,以保证测量结果的准确性。校准过程需要使用标准气体,操作较为繁琐,并且如果校准不当,可能会影响测量结果的可靠性。湖北氧含量气体分析仪生产厂商氧化锆传感器:但对气体杂质敏感,需要在高温下工作。
电化学传感器原理这种类型的气体分析仪主要通过电化学传感器来检测特定气体。电化学传感器通常由两个电极和电解质组成。当被测气体通过传感器时,在电极表面发生化学反应,产生电流或电势的变化。这个变化与被测气体的浓度成正比。通过测量电流或电势的大小,可以确定被测气体的浓度。例如,检测一氧化碳的电化学传感器,一氧化碳在工作电极上发生氧化反应,释放出电子,电子通过外电路流向对电极。这个过程中产生的电流大小与一氧化碳的浓度相关。红外吸收原理基于红外吸收原理的气体分析仪利用不同气体对特定波长的红外光具有不同的吸收特性来进行检测。当红外光通过含有被测气体的气室时,部分红外光被气体吸收。根据比尔-朗伯定律,被吸收的红外光强度与气体的浓度和光程长度成正比。通过测量透过气室的红外光强度的变化,可以确定被测气体的浓度。例如,二氧化碳对特定波长的红外光有强烈的吸收,通过测量该波长红外光的吸收程度,可以准确地确定二氧化碳的浓度。
气体分析仪在化工行业的应用已经十分的广大,作为一种过程控制仪表,为化工生产过程控制、指导工艺提供了重要数据。使得工艺控制更适时、更准确,实现了生产比较好化和效益比较大化。不过在实际应用过程中,有很多的气体分析仪无法正常、可靠、持续的投入到运行中,无法发挥其真正的作用,主要原因就是对气体分析仪表运行条件认识不足,预处理单元没有发挥真正的作用,从而制约了气体分析仪的使用。一般情况下,是否需要配备气体分析仪与处理单元,需根据客户现场工况和仪表的选型来确定,气体分析仪(系统)常见的检测方式分为直接检测和取样检测两种方式,常见的检测原理有电化学原理、氧化锆原理、物理原理(磁氧、镜面式露点仪等)、光学原理(激光原理、紫外原理、红外原理)顺磁传感器:对氧具有高度选择性,测量精度高,不受其他气体的干扰。但价格较高,对振动敏感。
热磁式氧分析仪 其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。在存在腐蚀性气体的环境中,需要选择特殊的抗腐蚀材料或对传感器进行防护处理。湖北氧含量气体分析仪生产厂商
顺磁原理氧含量分析仪可用于监测高压氧舱内的氧气含量,保证医疗的安全性和有效性。湖北氧含量气体分析仪生产厂商
三、热导原理热导式气体分析仪根据不同气体具有不同的热导率来检测气体成分。当一种混合气体通过一个热导池时,其中各组分气体的热导率不同,会导致热导池的温度分布发生变化。通过测量热导池的温度变化,可以确定混合气体中各组分的浓度。例如,氢气的热导率较高,当含有氢气的混合气体通过热导池时,会使热导池的温度变化较大,从而可以检测出氢气的浓度。四、半导体传感器原理半导体气体传感器利用半导体材料在被测气体作用下电导率发生变化的特性来检测气体。当被测气体与半导体材料接触时,会引起半导体表面的电子状态发生变化,从而导致电导率的改变。例如,在检测可燃气体时,可燃气体在半导体表面发生氧化还原反应,改变了半导体的电阻值,通过测量电阻值的变化可以确定可燃气体的浓度。湖北氧含量气体分析仪生产厂商