光学平台的构成,光学平台主要由4个部分组成,分别是阻尼面包板、隔振器、支撑腿及自平衡水平调节阀。下面分别介绍这几个部分的性能。阻尼面包板:1.井字形焊接芯板,结构示意图如下所示:不锈钢顶板和底板的厚度6~10mm(具体视平台厚度而定)、芯板采用6mm厚钢板井字形焊接后回火去应力处理,顶板具有精密加工的亚光表面;此结构能保证平台台面重,稳定性好,隔振性能优异,适合重负载使用。2.蜂窝型芯板,结构示意图如下所示:蜂窝面包板具有阻尼性能良好的结构,高刚度及低质量特性,蜂窝由经过精密压接的钢条制成,之后用高抗拉强度的环氧粘合剂粘结在一起,有效抗弯;隔离杯的加入可以有效防止工件进入蜂窝腔体,保证清洁环境使用;由于蜂窝钢条厚度只有0.3mm左右,所以此结构不适合重负载使用。光学平台在天文观测领域同样重要,支持大型天文望远镜的光学调整。阻尼光学面包板厂商
光学平台的热稳定性,热稳定性较关键的就在于各轴方向上都是对称的、各方向均匀的钢制结构。钢制的各个部件在热转化的过程中,延伸线和收缩性都是相似的,所以可以在温度变化的过程中保持良好的平整度。因为钢制的蜂窝芯结构是从顶板直接延伸到底板的,中间并没有塑料或者其他铝制泄露管理的结构,所以不会降低光学平台整体的刚度或引入更加高的热膨胀系数。我们的侧板也是钢制而不是木质,这样也消除了湿度而引起的环境不稳定因素。阻尼光学面包板厂商光学平台的设计舒适流线型,有助于提升实验室工作环境的观感。
光学平台的主要特点:一、易维护,光学平台通常需要经过定期维护,以保证其性能和稳定性。因此,平台的易维护性也是其重要特点之一。一般来说,光学平台的设计需要考虑到易拆卸和易安装等因素,以方便维护工作的进行。二、应用领域普遍,光学平台普遍应用于科研、医疗、航空航天等领域。在科研领域中,光学平台常用于激光系统、光学显微镜等实验设备中。在医疗领域中,光学平台可用于光学成像系统、光学手术系统等设备中。而在航空航天领域中,光学平台常用于卫星定位、地图制作等应用中。
光学隔振平台选用高阻尼加工技术和超高性能空气绷簧,集成且运用便利,适用于光学显微镜干涉仪轮廓仪等精密仪器,可为用户供给优异的被迫隔振性能。自动隔振渠道和被迫隔振渠道的差异在于隔振方式。被迫隔振渠道是由于资料特性(例如空气绷簧)而运用抗丢失性(粘度空气阻力等)自动隔振渠道是被迫隔振渠道操控的一部分,但它运用特别的振荡(或振荡)相位由操控体系进行电子调节(反相)体系命令致动器取得由检测传感器取得的传感器信息。光学平台设计时考虑抗老化性能,确保长时间使用不受材料老化影响。
光学平台系统选型定位:1.刚性光学平台:适用于对隔振要求不高的场合;2.被动隔振光学平台分为两类:非气浮式隔振光学平台:适用于对隔振要求较低的场合,平台固有频率5Hz~7.5Hz;气浮式隔振光学平台:适用于对隔振要求较高的场合,平台固有频率1Hz~3Hz;3.主动隔振光学平台:适用于对隔振要求极高的场合,隔振频率范围为0.6Hz~200Hz;4.面包板:适用于对隔振无要求但需机动灵活的场合;5.光学平台附件及配件:根据实际使用环境需求配置。某些光学平台采用循环水冷却系统,适用于高功率激光实验。阻尼光学面包板厂商
在生物医学研究中,光学平台用于激光共聚焦显微镜和荧光成像等实验。阻尼光学面包板厂商
生产意义,当今科学界的科学实验需要越来越精密的计算和测量,因此一个能与外界环境和干扰相对隔离的设备仪器对实验的结果测量时非常重要的。能够固定各种光学元件以及显微镜成像设备等的光学平台也成为科研实验中必备的产品。光学平台较主要的一个目标是消除平台上任意两个以上部件之间的相对位移。测试方法:阻尼,光学平台或面包板较重要的特性为其共振频率。共振频率和振幅是负相关的,因此共振频率应尽可能地增大,从而将振动强度较小化。平台和面包板会在一个特定的频率范围内发生振动。为了改善性能,每种尺寸的平台和面包板的阻尼效果都需要进行优化。平台阻尼需要进行各种测试,对其厚度/面积的比值进行优化。更大面积的平台(边长至少为10英尺或3米)具有厚度为12.2英寸(310毫米)的标准厚度,这样可以提高稳定性。对于更小面积的平台,厚度可以是8.3英寸(210毫米)或12.2英寸(310毫米),也可定制更大尺寸。阻尼光学面包板厂商