虽然在编码方式和芯片内部做了很多工作,但是传输链路的损耗仍然是巨大的挑战,特 别是当采用比较便宜的PCB板材时,就不得不适当减少传输距离和链路上的连接器数量。 在PCIe3.0的8Gbps速率下,还有可能用比较便宜的FR4板材在大约20英寸的传输距离 加2个连接器实现可靠信号传输。在PCle4.0的16Gbps速率下,整个16Gbps链路的损耗 需要控制在-28dB @8GHz以内,其中主板上芯片封装、PCB/过孔走线、连接器的损耗总 预算为-20dB@8GHz,而插卡上芯片封装、PCB/过孔走线的损耗总预算为-8dB@8GHz。
整个链路的长度需要控制在12英寸以内,并且链路上只能有一个连接器。如果需要支持更 长的传输距离或者链路上有更多的连接器,则需要在链路中插入Re-timer芯片对信号进行 重新整形和中继。图4.6展示了典型的PCle4.0的链路模型以及链路损耗的预算,图中各 个部分的链路预算对于设计和测试都非常重要,对于测试部分的影响后面会具体介绍。 pcie物理层面检测,pcie时序测试;北京信息化PCI-E测试
另外,在PCIe4 .0发送端的LinkEQ以及接收容限等相关项目测试中,都还需要用到能 与被测件进行动态链路协商的高性能误码仪。这些误码仪要能够产生高质量的16Gbps信 号、能够支持外部100MHz参考时钟的输入、能够产生PCIe测试需要的不同Preset的预加 重组合,同时还要能够对输出的信号进行抖动和噪声的调制,并对接收回来的信号进行均 衡、时钟恢复以及相应的误码判决,在进行测试之前还需要能够支持完善的链路协商。17是 一 个典型的发射机LinkEQ测试环境。由于发送端与链路协商有关的测试项目 与下面要介绍的接收容限测试的连接和组网方式比较类似,所以细节也可以参考下面章节 内容,其相关的测试软件通常也和接收容限的测试软件集成在一起。北京信息化PCI-E测试我的被测件不是标准的PCI-E插槽金手指的接口,怎么进行PCI-E的测试?
SigTest软件的算法由PCI-SIG提供,会对信号进行时钟恢复、均衡以及眼图、抖 动的分析。由于PCIe4.0的接收机支持多个不同幅度的CTLE均衡,而且DFE的电平也 可以在一定范围内调整,所以SigTest软件会遍历所有的CTLE值并进行DFE的优化,并 根据眼高、眼宽的结果选择比较好的值。14是SigTest生成的PCIe4.0的信号质量测试 结果。SigTest需要用户手动设置示波器采样、通道嵌入、捕获数据及进行后分析,测试效率 比较低,而且对于不熟练的测试人员还可能由于设置疏忽造成测试结果的不一致,测试项目 也主要限于信号质量与Preset相关的项目。为了提高PCIe测试的效率和测试项目覆盖 率,有些示波器厂商提供了相应的自动化测试软件。
当被测件进入环回模式并且误码仪发出压力眼图的信号后,被测件应该会把其从RX 端收到的数据再通过TX端发送出去送回误码仪,误码仪通过比较误码来判断数据是否被 正确接收,测试通过的标准是要求误码率小于1.0×10- 12。 19是用高性能误码仪进 行PCIe4.0的插卡接收的实际环境。在这款误码仪中内置了时钟恢复电路、预加重模块、 参考时钟倍频、信号均衡电路等,非常适合速率高、要求复杂的场合。在接收端容限测试中, 可调ISI板上Trace线的选择也非常重要。如果选择的链路不合适,可能需要非常长的时 间进行Stress Eye的计算和链路调整,甚至无法完成校准和测试。 一般建议事先用VNA 标定和选择好链路,这样校准过程会快很多,测试结果也会更加准确。所以,在PCIe4.0的 测试中,无论是发送端测试还是接收端测试,都比较好有矢量网络分析仪配合进行ISI通道 选择。PCI-E转USB或UFS接口的控制芯片和测试板的制作方法;
这么多的组合是不可能完全通过人工设置和调整 的,必须有一定的机制能够根据实际链路的损耗、串扰、反射差异以及温度和环境变化进行 自动的参数设置和调整,这就是链路均衡的动态协商。动态的链路协商在PCIe3.0规范中 就有定义,但早期的芯片并没有普遍采用;在PCIe4.0规范中,这个要求是强制的,而且很 多测试项目直接与链路协商功能相关,如果支持不好则无法通过一致性测试。图4.7是 PCIe的链路状态机,从设备上电开始,需要经过一系列过程才能进入L0的正常工作状态。 其中在Configuration阶段会进行简单的速率和位宽协商,而在Recovery阶段则会进行更 加复杂的发送端预加重和接收端均衡的调整和协商。PCI-E4.0的标准什么时候推出?有什么变化?北京信息化PCI-E测试
PCIE 3.0的发射机物理层测试;北京信息化PCI-E测试
PCIe 的物理层(Physical Layer)和数据链路层(Data Link Layer)根据高速串行通信的 特点进行了重新设计,上层的事务层(Transaction)和总线拓扑都与早期的PCI类似,典型 的设备有根设备(Root Complex) 、终端设备(Endpoint), 以及可选的交换设备(Switch) 。早 期的PCle总线是CPU通过北桥芯片或者南桥芯片扩展出来的,根设备在北桥芯片内部, 目前普遍和桥片一起集成在CPU内部,成为CPU重要的外部扩展总线。PCIe 总线协议层的结构以及相关规范涉及的主要内容。北京信息化PCI-E测试
按照测试规范的要求,在发送信号质量的测试中,只要有1个Preset值下能够通过信 号质量测试就算过关;但是在Preset的测试中,则需要依次遍历所有的Preset,并依次保存 波形进行分析。对于PCIe3.0和PCIe4.0的速率来说,由于采用128b/130b编码,其一致性测试码型比之前8b/10b编码下的一致性测试码型要复杂,总共包含36个128b/130b的 编码字。通过特殊的设计, 一致性测试码型中包含了长“1”码型、长“0”码型以及重复的“01” 码型,通过对这些码型的计算和处理,测试软件可以方便地进行预加重、眼图、抖动、通道损 耗的计算。 11是典型PCle3.0和PCIe...