在半导体制造领域,立式炉被大范围用于晶圆的热处理工艺,如氧化、扩散和退火。由于半导体材料对温度和气氛的敏感性极高,立式炉能够提供精确的温度控制和均匀的热场分布,确保晶圆在高温处理过程中不受污染。此外,立式炉的多层设计允许同时处理多片晶圆,显著提高了生产效率。其封闭式结构还能有效防止外界杂质进入,保证半导体材料的高纯度。随着半导体技术的不断进步,立式炉在晶圆制造中的作用愈发重要,成为确保芯片性能稳定性和可靠性的关键设备。陶瓷烧制选立式炉,成就精美陶瓷制品。安徽立式炉氧化炉
如今,环保要求日益严格,立式炉的环保技术创新成为发展的关键。一方面,采用低氮燃烧技术,通过优化燃烧器结构和燃烧过程,降低氮氧化物的生成,减少对大气环境的污染。一些立式炉配备了脱硝装置,对燃烧废气中的氮氧化物进行进一步处理,使其排放达到环保标准。另一方面,加强对燃烧废气中粉尘和颗粒物的处理,采用高效的除尘设备,如布袋除尘器、静电除尘器等,去除废气中的杂质,实现清洁排放。此外,通过余热回收利用,降低能源消耗,减少温室气体排放,实现立式炉的绿色环保运行,符合可持续发展的要求。安徽立式炉氧化炉精确的温度传感器,助力立式炉控温。
立式炉主要适用于6"、8"、12"晶圆的氧化、合金、退火等工艺。氧化是在中高温下通入特定气体(O2/H2/DCE),在硅片表面发生氧化反应,生成二氧化硅薄膜的一种工艺。生成的二氧化硅薄膜可以作为集成电路器件前道的缓冲介质层和栅氧化层等。退火是在中低温条件下,通入惰性气体(N2),消除硅片界面处晶格缺陷和晶格损伤,优化硅片界面质量的一种工艺。立式炉通过电加热器或其他加热元件对炉膛内的物料进行加热。由于炉膛管道垂直放置,热量在炉膛内上升过程中能够得到更均匀的分布,有助于提高加热效率和温度均匀性。
立式炉占地面积小:由于其直立式结构,在处理相同物料量的情况下,立式炉相比卧式炉通常具有更小的占地面积,这对于土地资源紧张的工业场地来说具有很大的优势。热效率高:立式炉的炉膛结构有利于热量的集中和利用,能够使热量更有效地传递给物料,提高热效率,降低能源消耗。温度均匀性好:通过合理设计炉膛形状、燃烧器布置和炉内气流组织,立式炉能够在炉膛内实现较好的温度均匀性,保证物料受热均匀,提高产品质量。操作灵活性高:可以根据不同的工艺要求,灵活调整燃烧器的运行参数、物料的进料速度等,适应多种物料和工艺的加热需求。立式炉的多层设计可同时处理多片晶圆,提升生产效率。
在新能源材料制备领域,立式炉发挥着不可替代的作用。在锂电池材料生产中,用于对正极材料、负极材料进行烧结处理。精确控制温度和气氛,使材料的晶体结构和性能达到理想状态,提高电池的能量密度和循环寿命。在太阳能光伏材料制备中,立式炉用于硅片的扩散、退火等工艺。通过精确控制温度,改善硅片的电学性能和光学性能,提高太阳能电池的转换效率。新能源材料对制备工艺要求极高,立式炉的高精度温度控制和良好的气氛控制能力,满足了这些严格要求,推动了新能源产业的发展。立式炉余热回收利用,节能效果明显。安徽立式炉氧化炉
立式炉在高温合金制造中用于航空发动机叶片的热处理。安徽立式炉氧化炉
立式炉的关键结构包含炉膛、燃烧器、炉管以及烟囱等部分。炉膛作为关键空间,为物料的加热反应提供场所,其形状和尺寸根据不同的工艺需求而设计,内部衬里通常采用耐高温、隔热性能良好的材料,以减少热量散失并保护炉体。燃烧器安装在炉膛底部或侧面,负责将燃料与空气按比例混合并充分燃烧,为加热过程提供热源。炉管则是物料流经的通道,根据工艺要求,可设计为直管、盘管等多种形式,均匀分布在炉膛内,充分吸收燃烧产生的热量。烟囱位于炉体顶部,主要作用是排出燃烧后的废气,同时利用烟囱效应,促进炉内空气的流通,保障燃烧的充分性。合理的结构设计是立式炉高效运行的基础,各部件协同工作,确保热量均匀传递,物料受热稳定。安徽立式炉氧化炉