AOI 的多设备协同检测方案满足复杂板卡全流程管控需求,爱为视 SM510 支持与 SPI(焊膏检测)、AXI(X 光检测)设备组成立体检测网络。例如,在检测多层 PCB 时,SPI 先验证焊膏印刷质量,AOI 负责表面元件贴装与焊锡外观检测,AXI 则穿透检测内层焊点,三者数据互通形成完整的质量档案。某工业控制板生产线上,通过三机种协同检测,将整体不良率从 1.8% 降至 0.3%,同时实现了从焊膏印刷到回流焊的全工艺链追溯,为复杂板卡的高可靠性生产提供了保障。AOI智能视觉系统通过高精度相机抓图,结合卷积神经网络与深度学习,智能判定缺陷。玻璃aoi
AOI 的检测能力直接影响 SMT 环节的良品率,爱为视 SM510 在这方面表现。其采用 1200W 全彩工业相机,分辨率达 9μ,像元尺寸 3.45μm,配合 RGBW 四色环形 LED 光源,可捕捉 PCBA 表面细微缺陷。以连锡检测为例,相机能识别焊盘间微小的焊锡桥接,结合深度学习算法分析灰度值与形态特征,有效区分真实缺陷与噪声,检出率高达 99% 以上,同时通过数百万级样本训练降低误报率。AOI 操作流程极简,新建模板至启动识别四步,提升易用性,适合大规模生产应用。玻璃aoiAOI的AI辅助编程简化操作,无需复杂参数,新手可快速上手,降低人工编程难度。
AOI 的软件兼容性为工厂数字化转型奠定基础,爱为视 SM510 支持与 MES(制造执行系统)、ERP(企业资源计划系统)等上层管理系统对接,实时上传检测数据与生产状态。例如,当设备检测到某批次 PCBA 不良率超标时,数据可即时同步至 MES 系统,触发自动停线或工单调整流程,实现质量问题的快速响应。此外,设备提供开放的 API 接口,可与第三方软件集成,满足不同企业定制化的数据管理需求。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。
AOI 的多维度报表功能为管理层提供决策依据,爱为视 SM510 可生成缺陷柏拉图、趋势控制图、设备稼动率报表等 10 余种可视化报告,支持按日、周、月维度自动汇总数据。例如,通过柏拉图分析可直观显示当月大主要缺陷(如连锡占 45%、偏移占 30%、缺件占 15%),帮助企业聚焦重点改善方向;趋势控制图则可追踪关键工艺参数(如检测通过率)的波动情况,及时发现潜在的质量隐患。这些报表不可通过本地显示器查看,还能自动发送至管理层邮箱,便于远程掌握产线运行状态。研发 AOI 旨在提升检测自动化水平,为工业生产提速增效。
AOI 的智能学习进化能力确保设备长期保持检测水平,爱为视 SM510 支持在线增量学习,系统可自动收集生产过程中出现的新类型缺陷图像,定期对深度学习模型进行迭代优化。例如,当新型封装元件(如 Flip Chip 倒装芯片)引入产线时,工程师只需标注少量样本,设备即可通过迁移学习快速掌握该元件的检测规则,无需重新进行大规模数据训练。这种持续进化能力使设备能够适应电子行业快速更新的元件技术与工艺,延长设备的技术生命周期,避免因工艺变革导致的设备淘汰。AOI具条码识别功能,支持一维/二维码,数据可追溯,按条码、机型、时间等维度对接MES。玻璃aoi
AOI光束引导指示不良位置,减少盲目排查,提高维修针对性与问题解决效率。玻璃aoi
随着3D打印技术的发展,AOI在该领域的应用也逐渐受到关注。在3D打印过程中,AOI可以实时监测打印过程,检测打印层的质量、层与层之间的粘结情况以及终产品的表面质量。例如,通过AOI可以发现打印过程中是否出现了漏层、错层等问题,及时调整打印参数,避免打印失败。对于3D打印的复杂结构产品,AOI还可以检测内部结构的完整性。通过将AOI技术与3D打印技术相结合,能够提高3D打印产品的质量和可靠性,推动3D打印技术在更多领域的应用和发展。玻璃aoi