H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程,减少了达到峰值或接近峰值应用性能所需的调优;为这两种类型的内存访问提供了佳的综合性能。H100GPU层次结构和异步性改进关键数据局部性:将程序数据尽可能的靠近执行单元异步执行:寻找的任务与内存传输和其他事物重叠。目标是使GPU中的所有单元都能得到充分利用。线程块集群(ThreadBlockClusters)提出背景:线程块包含多个线程并发运行在单个SM上。H100 GPU 提供高效的计算资源利用率。Singapore英伟达H100GPU
稀疏性特征利用了深度学习网络中的细粒度结构化稀疏性,使标准张量性能翻倍。新的DPX指令加速了动态规划算法达到7倍。IEEEFP64和FP32的芯片到芯片处理速率提高了3倍(因为单个SM逐时钟(clock-for-clock)性能提高了2倍;额外的SM数量;更快的时钟)新的线程块集群特性(ThreadBlockClusterfeature)允许在更大的粒度上对局部性进行编程控制(相比于单个SM上的单线程块)。这扩展了CUDA编程模型,在编程层次结构中增加了另一个层次,包括线程(Thread)、线程块(ThreadBlocks)、线程块集群(ThreadBlockCluster)和网格(Grids)。集群允许多个线程块在多个SM上并发运行,以同步和协作的获取数据和交换数据。新的异步执行特征包括一个新的张量存储加速(TensorMemoryAccelerator,TMA)单元,它可以在全局内存和共享内存之间非常有效的传输大块数据。TMA还支持集群中线程块之间的异步拷贝。还有一种新的异步事务屏障,用于进行原子数据的移动和同步。新的Transformer引擎采用专门设计的软件和自定义Hopper张量技术相结合的方式。Transformer引擎在FP8和16位计算之间进行智能管理和动态选择,在每一层中自动处理FP8和16位之间的重新选择和缩放。Singapore英伟达H100GPUH100 GPU 优惠促销,数量有限。
节点内部的每个NVSwitch提供64个第四代NVLink链路端口,以加速多GPU连接。交换机的总吞吐率从上一代的。新的第三代NVSwitch技术也为多播和NVIDIASHARP网络内精简的集群操作提供了硬件加速。新的NVLinkSwitch系统互连技术和新的基于第三代NVSwitch技术的第二级NVLink交换机引入地址空间隔离和保护,使得多达32个节点或256个GPU可以通过NVLink以2:1的锥形胖树拓扑连接。这些相连的节点能够提供TB/sec的全连接带宽,并且能够提供难以置信的一个exaFlop(百亿亿次浮点运算)的FP8稀疏AI计算。PCIeGen5提供了128GB/sec的总带宽(各个方向上为64GB/s),而Gen4PCIe提供了64GB/sec的总带宽(各个方向上为32GB/sec)。PCIeGen5使H100可以与性能高的x86CPU和SmartNICs/DPU(数据处理单元)接口。基于H100的系统和板卡H100SXM5GPU使用NVIDIA定制的SXM5板卡内置H100GPU和HMB3内存堆栈提供第四代NVLink和PCIeGen5连接提供高的应用性能这种配置非常适合在一个服务器和跨服务器的情况下将应用程序扩展到多个GPU上的客户。通过在HGXH100服务器板卡上配置4-GPU和8-GPU实现4-GPU配置:包括GPU之间的点对点NVLink连接,并在服务器中提供更高的CPU-GPU比率;8-GPU配置:包括NVSwitch。
它能够高效处候模拟、基因组学研究、天体物理学计算等复杂的科学任务。H100GPU的大规模并行处理单元和高带宽内存可以提升计算效率和精度,使科学家能够更快地获得研究成果。其稳定性和可靠性也为长时间计算任务提供了坚实保障,是科学计算领域不可或缺的工具。在大数据分析领域,H100GPU展现了其强大的数据处理能力。它能够快速处理和分析海量数据,提供实时的分析结果,帮助企业做出更快的决策。无论是在金融分析、市场预测还是用户行为分析中,H100GPU都能提升数据处理速度和分析准确性。其高能效设计不仅提升了性能,还为企业节省了大量的能源成本,成为大数据分析的硬件。H100GPU在云计算中的应用也非常。它的高并行处理能力和大带宽内存使云计算平台能够高效地处理大量并发任务,提升整体服务质量。H100GPU的灵活性和易管理性使其能够轻松集成到各种云计算架构中,满足不同客户的需求。无论是公共云、私有云还是混合云环境,H100 GPU 适用于智能制造领域。
他们与来自大云(Azure,GoogleCloud,AWS)的一些人交谈,试图获得许多H100。他们发现他们无法从大云中获得大量分配,并且一些大云没有良好的网络设置。因此,他们与其他提供商(如CoreWeave,Oracle,Lambda,FluidStack)进行了交谈。如果他们想自己购买GPU并拥有它们,也许他们也会与OEM和Nvidia交谈。终,他们获得了大量的GPU。现在,他们试图获得产品市场契合度。如果不是很明显,这条途径就没有那么好了-请记住,OpenAI在更小的模型上获得了产品市场契合度,然后将它们扩大了规模。但是,现在要获得产品市场契合度,您必须比OpenAI的模型更适合用户的用例,因此首先,您将需要比OpenAI开始时更多的GPU。预计至少到100年底,H2023将短缺数百或数千次部署。到2023年底,情况将更加清晰,但就目前而言,短缺似乎也可能持续到2024年的某些时间。GPU供需之旅。大版本取得联系#作者:克莱·帕斯卡。问题和笔记可以通过电子邮件发送。新帖子:通过电子邮件接收有关新帖子的通知。帮助:看这里。自然的下一个问题-英伟达替代品呢?#自然的下一个问题是“好吧,竞争和替代方案呢?我正在探索硬件替代方案以及软件方法。提交我应该探索的东西作为此表格的替代方案。例如。H100 GPU 拥有 8192 个 CUDA。Singapore英伟达H100GPU
H100 GPU 降价特惠,赶快抢购。Singapore英伟达H100GPU
基于H100的系统和板卡H100SXM5GPU使用NVIDIA定制的SXM5板卡内置H100GPU和HMB3内存堆栈提供第四代NVLink和PCIeGen5连接提供高的应用性能这种配置非常适合在一个服务器和跨服务器的情况下将应用程序扩展到多个GPU上的客户,通过在HGXH100服务器板卡上配置4-GPU和8-GPU实现4-GPU配置:包括GPU之间的点对点NVLink连接,并在服务器中提供更高的CPU-GPU比率;8-GPU配置:包括NVSwitch,以提供SHARP在网络中的缩减和任意对GPU之间900GB/s的完整NVLink带宽。H100SXM5GPU还被用于功能强大的新型DGXH100服务器和DGXSuperPOD系统中。H100PCIeGen5GPU以有350W的热设计功耗(ThermalDesignPower,TDP),提供了H100SXM5GPU的全部能力该配置可选择性地使用NVLink桥以600GB/s的带宽连接多达两个GPU,接近PCIeGen5的5倍。H100PCIe非常适合主流加速服务器(使用标准的架构,提供更低服务器功耗),为同时扩展到1或2个GPU的应用提供了很好的性能,包括AIInference和一些HPC应用。在10个前列数据分析、AI和HPC应用程序的数据集中,单个H100PCIeGPU**地提供了H100SXM5GPU的65%的交付性能,同时消耗了50%的功耗。DGXH100andDGXSuperPODNVIDIADGXH100是一个通用的高性能人工智能系统。Singapore英伟达H100GPU